
Boolean algebra

The logical symbol 0 and 1 are used for representing the digital input or output.

The symbols "1" and "0" can also be used for a permanently open and closed

digital circuit. The digital circuit can be made up of several logic gates. To perform the

logical operation with minimum logic gates, a set of rules were invented, known as

the Laws of Boolean Algebra. These rules are used to reduce the number of logic

gates for performing logic operations.

The Boolean algebra is mainly used for simplifying and analyzing the complex Boolean

expression. It is also known as Binary algebra because we only use binary numbers in

this. George Boole developed the binary algebra in 1854.

Rules in Boolean algebra

1. Only two values(1 for high and 0 for low) are possible for the variable used in

Boolean algebra.

2. The overbar(-) is used for representing the complement variable. So, the

complement of variable C is represented as .

3. The plus(+) operator is used to represent the ORing of the variables.

4. The dot(.) operator is used to represent the ANDing of the variables.

Properties of Boolean algebra

These are the following properties of Boolean algebra:

Annulment Law

When the variable is AND with 0, it will give the result 0, and when the variable is OR

with 1, it will give the result 1, i.e.,

B.0 = 0

B+1 = 1

Identity Law

When the variable is AND with 1 and OR with 0, the variable remains the same, i.e.,

B.1 = B

B+0 = B

Idempotent Law

When the variable is AND and OR with itself, the variable remains same or unchanged,

i.e.,

B.B = B

B+B = B

Complement Law

When the variable is AND and OR with its complement, it will give the result 0 and 1

respectively.

B.B' = 0

B+B' = 1

Double Negation Law

This law states that, when the variable comes with two negations, the symbol gets

removed and the original variable is obtained.

((A)')' = A

Commutative Law

This law states that no matter in which order we use the variables. It means that the

order of variables doesn't matter in this law.

A.B = B.A

A+B = B+A

Associative Law

This law states that the operation can be performed in any order when the variables

priority is of same as '*' and '/'.

(A.B).C = A.(B.C)

(A+B)+C = A+(B+C)

Distributive Law

This law allows us to open up of brackets. Simply, we can open the brackets in the

Boolean expressions.

A+(B.C) = (A+B).(A+C

A.(B+C) = (A.B)+(A.C)

Absorption Law

This law allows us for absorbing the similar variables.

B+(B.A) = B

B.(B+A) = B

De Morgan Law

The operation of an OR and AND logic circuit will remain same if we invert all the

inputs, change operators from AND to OR and OR to AND, and invert the output.

(A.B)' = A'+B'

(A+B)' = A'.B'

Boolean Functions

The binary variables and logic operations are used in Boolean algebra. The algebraic

expression is known as Boolean Expression, is used to describe the Boolean

Function. The Boolean expression consists of the constant value 1 and 0, logical

operation symbols, and binary variables.

Example 1: F=xy' z+p

We defined the Boolean function F=xy' z+p in terms of four binary variables x, y, z,

and p. This function will be equal to 1 when x=1, y=0, z=1 or z=1.

Example 2:

The output Y is represented on the left side of the equation. So,

Apart from the algebraic expression, the Boolean function can also be described in

terms of the truth table. We can represent a function using multiple algebraic

expressions. They are their logically equivalents. But for every function, we have only

one unique truth table.

In truth table representation, we represent all the possible combinations of inputs and

their result. We can convert the switching equations into truth tables.

Example: F(A,B,C,D)=A+BC'+D

The output will be high when A=1 or BC'=1 or D=1 or all are set to 1. The truth table

of the above example is given below. The 2n is the number of rows in the truth table.

The n defines the number of input variables. So the possible input combinations are

23=8.

Methods of simplifying the Boolean function

There are two methods which are used for simplifying Boolean function. These

functions are as follows:

Karnaugh-map or K-map

De-Morgan's law is very helpful for manipulating logical expressions. The logic gates

can also realize the logical expression. The k-map method is used to reduce the logic

gates for a minimum possible value required for the realization of a logical expression.

The K-map method will be done in two different ways, which we will discuss later in

the Simplification of Boolean expression section.

NAND gates realization

Apart from the K-map, we can also use the NAND gate for simplifying the Boolean

functions. Let's see an example:

Example 1: F(A,B,C,D)=A' C'+ABCD'+B' C' D+BCD'+A'B'

Laws and Rules of Boolean algebra

In simplification of the Boolean expression, the laws and rules of the Boolean algebra

play an important role. Before understanding these laws and rules of Boolean algebra,

understand the Boolean operations addition and multiplication concept.

Boolean Addition

The addition operation of Boolean algebra is similar to the OR operation. In digital

circuits, the OR operation is used to calculate the sum term, without using AND

operation. A + B, A + B', A + B + C', and A' + B + + D' are some of the examples of

'sum term'. The value of the sum term is true when one or more than one literals are

true and false when all the literals are false.

Boolean Multiplication

The multiplication operation of Boolean algebra is similar to the AND operation. In

digital circuits, the AND operation calculates the product, without using OR operation.

AB, AB, ABC, and ABCD are some of the examples of the product term. The value of

the product term is true when all the literals are true and false when any one of the

literal is false.

Laws of Boolean algebra

There are the following laws of Boolean algebra:

Backward Skip 10sPlay VideoForward Skip 10s

Commutative Law

This law states that no matter in which order we use the variables. It means that the

order of variables doesn't matter. In Boolean algebra, the OR and the addition

operations are similar. In the below diagram, the OR gate display that the order of the

input variables does not matter at all.

For two variables, the commutative law of addition is written as:

A+B = B+A

For two variables, the commutative law of multiplication is written as:

A.B = B.A

Associative Law

This law states that the operation can be performed in any order when the variables

priority is same. As '*' and '/' have same priority. In the below diagram, the associative

law is applied to the 2-input OR gate.

For three variables, the associative law of addition is written as:

A + (B + C) = (A + B) + C

For three variables, the associative law of multiplication is written as:

A(BC) = (AB)C

According to this law, no matter in what order the variables are grouped when ANDing

more than two variables. In the below diagram, the associative law is applied to 2-

input AND gate.

Distributive Law:

According to this law, if we perform the OR operation of two or more variables and

then perform the AND operation of the result with a single variable, then the result will

be similar to performing the AND operation of that single variable with each two or

more variable and then perform the OR operation of that product. This law explains

the process of factoring.

For three variables, the distributive law is written as:

A(B + C) = AB + AC

Rules of Boolean algebra

There are the following rules of Boolean algebra, which are mostly used in

manipulating and simplifying Boolean expressions. These rules plays an important role

in simplifying boolean expressions.

1. A+0=A 7. A.A=A

2. A+1=1 8. A.A'=0

3. A.0=0 9. A''=A

4. A.1=A 10. A+AB=A

5. A+A=A 11. A+A'B=A+B

6. A+A'=1 12. (A+B)(A+C)=A+BC

Rule 1: A + 0 = A

Let's suppose; we have an input variable A whose value is either 0 or 1. When we

perform OR operation with 0, the result will be the same as the input variable. So, if

the variable value is 1, then the result will be 1, and if the variable value is 0, then the

result will be 0. Diagrammatically, this rule can be defined as:

Rule 2: (A + 1) = 1

Let's suppose; we have an input variable A whose value is either 0 or 1. When we

perform OR operation with 1, the result will always be 1. So, if the variable value is

either 1 or 0, then the result will always be 1. Diagrammatically, this rule can be defined

as:

Rule 3: (A.0) = 0

Let's suppose; we have an input variable A whose value is either 0 or 1. When we

perform the AND operation with 0, the result will always be 0. This rule states that an

input variable ANDed with 0 is equal to 0 always. Diagrammatically, this rule can be

defined as:

Rule 4: (A.1) = A

Let's suppose; we have an input variable A whose value is either 0 or 1. When we

perform the AND operation with 1, the result will always be equal to the input variable.

This rule states that an input variable ANDed with 1 is equal to the input variable

always. Diagrammatically, this rule can be defined as:

Rule 5: (A + A) = A

Let's suppose; we have an input variable A whose value is either 0 or 1. When we

perform the OR operation with the same variable, the result will always be equal to the

input variable. This rule states an input variable ORed with itself is equal to the input

variable always. Diagrammatically, this rule can be defined as:

Rule 6: (A + A') = 1

Let's suppose; we have an input variable A whose value is either 0 or 1. When we

perform the OR operation with the complement of that variable, the result will always

be equal to 1. This rule states that a variable ORed with its complement is equal to 1

always. Diagrammatically, this rule can be defined as:

Rule 7: (A.A) = A

Let's suppose; we have an input variable A whose value is either 0 or 1. When we

perform the AND operation with the same variable, the result will always be equal to

that variable only. This rule states that a variable ANDed with itself is equal to the input

variable always. Diagrammatically, this rule can be defined as:

Rule 8: (A.A') = 0

Let's suppose; we have an input variable A whose value is either 0 or 1. When we

perform the AND operation with the complement of that variable, the result will always

be equal to 0. This rule states that a variable ANDed with its complement is equal to 0

always. Diagrammatically, this rule can be defined as:

Rule 9: A = (A')'

This rule states that if we perform the double complement of the variable, the result

will be the same as the original variable. So, when we perform the complement of

variable A, then the result will be A'. Further if we again perform the complement of

A', we will get A, that is the original variable.

Rule 10: (A + AB) = A

We can prove this rule by using the rule 2, rule 4, and the distributive law as:

A + AB = A(1 + B) Factoring (distributive law)

A + AB = A.1 Rule 2: (1 + B)= 1

A + AB = A Rule 4: A .1 = A

Rule 11: A + AB = A + B

We can prove this rule by using the above rules as:

A + AB = (A + AB)+ AB Rule 10: A = A + AB

A+AB= (AA + AB)+ AB Rule 7: A = AA

A+AB=AA +AB +AA +AB Rule 8: adding AA = 0

A+AB= (A + A)(A + B) Factoring

A+AB= 1.(A + B) Rule 6: A + A = 1

A+AB=A + B Rule 4: drop the 1

Rule 12: (A + B)(A + C) = A + BC

We can prove this rule by using the above rules as:

(A + B)(A + C)= AA + AC + AB + BC Distributive law

(A + B)(A + C)= A + AC + AB + BC Rule 7: AA = A

(A + B)(A + C)= A(1 + C)+ AB + BC Rule 2: 1 + C = 1

(A + B)(A + C)= A.1 + AB + BC Factoring (distributive law)

(A + B)(A + C)= A(1 + B)+ BC Rule 2: 1 + B = 1

(A + B)(A + C)= A.1 + BC Rule 4: A .1 = A

(A + B)(A + C)= A + BC

Next Topic Logic Gates

https://www.javatpoint.com/logic-gates-in-digital-electronics

	Boolean algebra
	Rules in Boolean algebra
	Properties of Boolean algebra
	Annulment Law
	Identity Law
	Idempotent Law
	Complement Law
	Double Negation Law
	Commutative Law
	Associative Law
	Distributive Law
	Absorption Law

	Boolean Functions
	Methods of simplifying the Boolean function
	Karnaugh-map or K-map
	NAND gates realization

	Laws and Rules of Boolean algebra
	Boolean Addition
	Boolean Multiplication
	Laws of Boolean algebra
	Commutative Law
	Associative Law
	Distributive Law:

	Rules of Boolean algebra
	Rule 1: A + 0 = A
	Rule 2: (A + 1) = 1
	Rule 3: (A.0) = 0
	Rule 4: (A.1) = A
	Rule 5: (A + A) = A
	Rule 6: (A + A') = 1
	Rule 7: (A.A) = A
	Rule 8: (A.A') = 0
	Rule 9: A = (A')'
	Rule 10: (A + AB) = A
	Rule 11: A + AB = A + B
	Rule 12: (A + B)(A + C) = A + BC

