
Boolean algebra   

The logical symbol 0 and 1 are used for representing the digital input or output. 

The symbols "1" and "0" can also be used for a permanently open and closed 

digital circuit. The digital circuit can be made up of several logic gates. To perform the 

logical operation with minimum logic gates, a set of rules were invented, known as 

the Laws of Boolean Algebra. These rules are used to reduce the number of logic 

gates for performing logic operations. 

The Boolean algebra is mainly used for simplifying and analyzing the complex Boolean 

expression. It is also known as Binary algebra because we only use binary numbers in 

this. George Boole developed the binary algebra in 1854. 

Rules in Boolean algebra 

1. Only two values(1 for high and 0 for low) are possible for the variable used in 

Boolean algebra. 

2. The overbar(-) is used for representing the complement variable. So, the 

complement of variable C is represented as . 

3. The plus(+) operator is used to represent the ORing of the variables. 

4. The dot(.) operator is used to represent the ANDing of the variables. 

Properties of Boolean algebra 

These are the following properties of Boolean algebra: 

Annulment Law 

When the variable is AND with 0, it will give the result 0, and when the variable is OR 

with 1, it will give the result 1, i.e., 

B.0 = 0 

B+1 = 1 

Identity Law 

When the variable is AND with 1 and OR with 0, the variable remains the same, i.e., 

B.1 = B 



B+0 = B 

Idempotent Law 

When the variable is AND and OR with itself, the variable remains same or unchanged, 

i.e., 

B.B = B 

B+B = B 

Complement Law 

When the variable is AND and OR with its complement, it will give the result 0 and 1 

respectively. 

B.B' = 0 

B+B' = 1 

Double Negation Law 

This law states that, when the variable comes with two negations, the symbol gets 

removed and the original variable is obtained. 

((A)')' = A 

Commutative Law 

This law states that no matter in which order we use the variables. It means that the 

order of variables doesn't matter in this law. 

A.B = B.A 

A+B = B+A 

Associative Law 

This law states that the operation can be performed in any order when the variables 

priority is of same as '*' and '/'. 

(A.B).C = A.(B.C) 

(A+B)+C = A+(B+C) 



Distributive Law 

This law allows us to open up of brackets. Simply, we can open the brackets in the 

Boolean expressions. 

A+(B.C) = (A+B).(A+C 

A.(B+C) = (A.B)+(A.C) 

Absorption Law 

This law allows us for absorbing the similar variables. 

B+(B.A) = B 

B.(B+A) = B 

De Morgan Law 

The operation of an OR and AND logic circuit will remain same if we invert all the 

inputs, change operators from AND to OR and OR to AND, and invert the output. 

(A.B)' = A'+B' 

(A+B)' = A'.B' 

Boolean Functions 

The binary variables and logic operations are used in Boolean algebra. The algebraic 

expression is known as Boolean Expression, is used to describe the Boolean 

Function. The Boolean expression consists of the constant value 1 and 0, logical 

operation symbols, and binary variables. 

Example 1: F=xy' z+p 

We defined the Boolean function F=xy' z+p in terms of four binary variables x, y, z, 

and p. This function will be equal to 1 when x=1, y=0, z=1 or z=1. 

Example 2: 

 



The output Y is represented on the left side of the equation. So, 

 

Apart from the algebraic expression, the Boolean function can also be described in 

terms of the truth table. We can represent a function using multiple algebraic 

expressions. They are their logically equivalents. But for every function, we have only 

one unique truth table. 

In truth table representation, we represent all the possible combinations of inputs and 

their result. We can convert the switching equations into truth tables. 

Example: F(A,B,C,D)=A+BC'+D 

The output will be high when A=1 or BC'=1 or D=1 or all are set to 1. The truth table 

of the above example is given below. The 2n is the number of rows in the truth table. 

The n defines the number of input variables. So the possible input combinations are 

23=8. 

 

Methods of simplifying the Boolean function 

There are two methods which are used for simplifying Boolean function. These 

functions are as follows: 



Karnaugh-map or K-map 

De-Morgan's law is very helpful for manipulating logical expressions. The logic gates 

can also realize the logical expression. The k-map method is used to reduce the logic 

gates for a minimum possible value required for the realization of a logical expression. 

The K-map method will be done in two different ways, which we will discuss later in 

the Simplification of Boolean expression section. 

NAND gates realization 

Apart from the K-map, we can also use the NAND gate for simplifying the Boolean 

functions. Let's see an example: 

Example 1: F(A,B,C,D)=A' C'+ABCD'+B' C' D+BCD'+A'B' 

 

 

 

 

 

 

 

 



Laws and Rules of Boolean algebra 

In simplification of the Boolean expression, the laws and rules of the Boolean algebra 

play an important role. Before understanding these laws and rules of Boolean algebra, 

understand the Boolean operations addition and multiplication concept. 

Boolean Addition 

The addition operation of Boolean algebra is similar to the OR operation. In digital 

circuits, the OR operation is used to calculate the sum term, without using AND 

operation. A + B, A + B', A + B + C', and A' + B + + D' are some of the examples of 

'sum term'. The value of the sum term is true when one or more than one literals are 

true and false when all the literals are false. 

Boolean Multiplication 

The multiplication operation of Boolean algebra is similar to the AND operation. In 

digital circuits, the AND operation calculates the product, without using OR operation. 

AB, AB, ABC, and ABCD are some of the examples of the product term. The value of 

the product term is true when all the literals are true and false when any one of the 

literal is false. 

Laws of Boolean algebra 

There are the following laws of Boolean algebra: 
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Commutative Law 

This law states that no matter in which order we use the variables. It means that the 

order of variables doesn't matter. In Boolean algebra, the OR and the addition 

operations are similar. In the below diagram, the OR gate display that the order of the 

input variables does not matter at all. 

For two variables, the commutative law of addition is written as: 

A+B = B+A 



 

 

For two variables, the commutative law of multiplication is written as: 

A.B = B.A 
 

 

Associative Law 

This law states that the operation can be performed in any order when the variables 

priority is same. As '*' and '/' have same priority. In the below diagram, the associative 

law is applied to the 2-input OR gate. 

For three variables, the associative law of addition is written as: 

A + (B + C) = (A + B) + C 
 

 

For three variables, the associative law of multiplication is written as: 

A(BC) = (AB)C 



According to this law, no matter in what order the variables are grouped when ANDing 

more than two variables. In the below diagram, the associative law is applied to 2-

input AND gate. 

 

Distributive Law: 

According to this law, if we perform the OR operation of two or more variables and 

then perform the AND operation of the result with a single variable, then the result will 

be similar to performing the AND operation of that single variable with each two or 

more variable and then perform the OR operation of that product. This law explains 

the process of factoring. 

For three variables, the distributive law is written as: 

A(B + C) = AB + AC 
 

 

Rules of Boolean algebra 



There are the following rules of Boolean algebra, which are mostly used in 

manipulating and simplifying Boolean expressions. These rules plays an important role 

in simplifying boolean expressions. 

1. A+0=A 7. A.A=A 

2. A+1=1 8. A.A'=0 

3. A.0=0 9. A''=A 

4. A.1=A 10. A+AB=A 

5. A+A=A 11. A+A'B=A+B 

6. A+A'=1 12. (A+B)(A+C)=A+BC 

Rule 1: A + 0 = A 

Let's suppose; we have an input variable A whose value is either 0 or 1. When we 

perform OR operation with 0, the result will be the same as the input variable. So, if 

the variable value is 1, then the result will be 1, and if the variable value is 0, then the 

result will be 0. Diagrammatically, this rule can be defined as: 

 

Rule 2: (A + 1) = 1 

Let's suppose; we have an input variable A whose value is either 0 or 1. When we 

perform OR operation with 1, the result will always be 1. So, if the variable value is 

either 1 or 0, then the result will always be 1. Diagrammatically, this rule can be defined 

as: 



 

Rule 3: (A.0) = 0 

Let's suppose; we have an input variable A whose value is either 0 or 1. When we 

perform the AND operation with 0, the result will always be 0. This rule states that an 

input variable ANDed with 0 is equal to 0 always. Diagrammatically, this rule can be 

defined as: 

 

Rule 4: (A.1) = A 

Let's suppose; we have an input variable A whose value is either 0 or 1. When we 

perform the AND operation with 1, the result will always be equal to the input variable. 

This rule states that an input variable ANDed with 1 is equal to the input variable 

always. Diagrammatically, this rule can be defined as: 

 

Rule 5: (A + A) = A 

Let's suppose; we have an input variable A whose value is either 0 or 1. When we 

perform the OR operation with the same variable, the result will always be equal to the 

input variable. This rule states an input variable ORed with itself is equal to the input 

variable always. Diagrammatically, this rule can be defined as: 



 

Rule 6: (A + A') = 1 

Let's suppose; we have an input variable A whose value is either 0 or 1. When we 

perform the OR operation with the complement of that variable, the result will always 

be equal to 1. This rule states that a variable ORed with its complement is equal to 1 

always. Diagrammatically, this rule can be defined as: 

 

Rule 7: (A.A) = A 

Let's suppose; we have an input variable A whose value is either 0 or 1. When we 

perform the AND operation with the same variable, the result will always be equal to 

that variable only. This rule states that a variable ANDed with itself is equal to the input 

variable always. Diagrammatically, this rule can be defined as: 

 

Rule 8: (A.A') = 0 

Let's suppose; we have an input variable A whose value is either 0 or 1. When we 

perform the AND operation with the complement of that variable, the result will always 



be equal to 0. This rule states that a variable ANDed with its complement is equal to 0 

always. Diagrammatically, this rule can be defined as: 

 

Rule 9: A = (A')' 

This rule states that if we perform the double complement of the variable, the result 

will be the same as the original variable. So, when we perform the complement of 

variable A, then the result will be A'. Further if we again perform the complement of 

A', we will get A, that is the original variable. 

 

Rule 10: (A + AB) = A 

We can prove this rule by using the rule 2, rule 4, and the distributive law as: 

A + AB = A(1 + B)                 Factoring (distributive law) 

A + AB = A.1                 Rule 2: (1 + B)= 1 

A + AB = A                 Rule 4: A .1 = A 
 

 

Rule 11: A + AB = A + B 



We can prove this rule by using the above rules as: 

A + AB = (A + AB)+ AB                 Rule 10: A = A + AB 

A+AB= (AA + AB)+ AB                 Rule 7: A = AA 

A+AB=AA +AB +AA +AB                 Rule 8: adding AA = 0 

A+AB= (A + A)(A + B)                 Factoring 

A+AB= 1.(A + B)                 Rule 6: A + A = 1 

A+AB=A + B                 Rule 4: drop the 1 
 

 

Rule 12: (A + B)(A + C) = A + BC 

We can prove this rule by using the above rules as: 

(A + B)(A + C)= AA + AC + AB + BC                 Distributive law 

(A + B)(A + C)= A + AC + AB + BC                 Rule 7: AA = A 

(A + B)(A + C)= A( 1 + C)+ AB + BC                 Rule 2: 1 + C = 1 

(A + B)(A + C)= A.1 + AB + BC                 Factoring (distributive law) 

(A + B)(A + C)= A(1 + B)+ BC                 Rule 2: 1 + B = 1 

(A + B)(A + C)= A.1 + BC                 Rule 4: A .1 = A 

(A + B)(A + C)= A + BC 



 

 

 

Next Topic Logic Gates 
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